低温物理学講義 超流動 【5月23日】 ヘリウム,量子パラメーター,ボース凝縮 相図³Heと⁴He 超流動 粘性 二流体モデル 内部対流,熱機械効果 超流動流体力学

【5月30日】 第2音波,第3音波,第4音波 循環,渦,渦輪,回復距離 フォノンとロトン ランダウ条件,臨界速度

【6月6日】 ヘリウム中のイオン,移動度 渦とイオン ヘリウム液面電子系,移動度,リップロン, ウィグナー結晶,ディンプル

【参考書】

D.R.Tilley and J.Tilley, "Superfluidity and Superconductivity" 3rd ed.(Adam Hilger, Bristol and New York, 1990) 山田一雄,大見哲巨「超流動」新物理学シリーズ28 培風館, 1995 S.J.Putterman: "Superfluid Hydrodynamics" (North Holland, 1974) 低温物理学の夜明け

1908年7月10日 オランダ・ライデン大学 Kammerligh-Onnes ヘリウムの液化

常圧での液体ヘリウムの沸点 4.2K

より低温を得るには,真空ポンプで強制蒸発させる 液相と気相の共存線(蒸気圧曲線)に沿って温度が下がる 1K程度まで到達可能

より低い温度を得るには

同じ温度でより蒸気圧の高いヘリウム3を用いる (~0.3K)
 希釈冷凍機 (10mK)
 断熱消磁,核断熱消磁 (10µK)

真空ポンプによる減圧

常圧	760	torr	4.2 K
	1	torr	1.3 K

ガラスデュワを使った経験,液体へリウムを見た経験は?

途中の38torr, 2.17Kで劇的な変化 それまで沸騰していた液体が急に静かになる. 蒸発が表面からしか起こらなくなる.

 $\Delta C \propto \log \left| T - T_{\lambda} \right|$

ヘリウム4とヘリウム3

液体ヘリウムの低温相(He

e)が超流動であることの実験的証明は Kapitza による.

量子液体

希ガス分子(He,Ne,Ar,Kr,Xe) 単原子分子,電子の閉殻構造 分極しにくい

分子間相互作用は,遠方では van der Waals 力 $\propto r^{-6}$

近距離ではハードコア斥力

これを表すのに良く使われるのが Lennard-Jones ポテ ンシャル

$$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

凝縮相(液相あるいは固体相)での分子間距離をaとすると,運動エネルギーは $\approx \frac{\hbar^2}{2m} \frac{1}{a^2}$. これとポテンシャルエネルギー ε との比較 . $a \sim \sigma$ として数因子は無視すると

Λ [*] ≡ <u></u> ん [*] = <u></u> ん [*] = <i></i> = <i></i> ん [*] =	表 1		
$\sigma\sqrt{marepsilon}$ 「島子性」の尺度となる		ε (K)	6
④ (³ H e と ⁴ H e と違いは質量だけ)	³ He ⁴ He	10.2	
(勝本講義でのパラメター q は Λ^* の2乗にあ	Ne	35.6	
たる .)	Ar	120	
	Kr	166	
	v	000	

 $\sigma(\dot{A})$ Λ^* 3.05 2.56 2.64 0.59 2.74 0.19 3.41 3.65 0.10 0.06 3.92 Xe | 230

ボース凝縮

$$n(\varepsilon_{i},T) = \frac{1}{\exp[(\varepsilon_{i} - \mu)/k_{\rm B}T] - 1}$$
(1)
$$N = \sum_{i} n(\varepsilon_{i},T)$$

全粒子数 Nを基底準位 $\varepsilon_0 = 0$ を占める粒子数 N_0 と, 励起準位を占める粒子数 N_1 とに分け る.

$$N_{0} = \frac{1}{\exp[-\mu/k_{B}T] - 1}$$
(2)
$$N_{1}(T) = \frac{L^{3}}{2\pi^{2}\hbar^{3}} \int_{0}^{\infty} \frac{p^{2}dp}{\exp[(\varepsilon - \mu)/k_{B}T] - 1}$$

$$= L^{3} \left(\frac{mk_{B}T}{2\pi\hbar^{2}}\right)^{3/2} F_{3/2} \left(-\frac{\mu}{k_{B}T}\right)$$

$$= \frac{L^{3}}{\lambda_{T}^{3}} F_{3/2} \left(-\frac{\mu}{k_{B}T}\right)$$
(3)

$$F_{3/2}(\alpha) = \frac{2}{\sqrt{\pi}} \int \frac{\sqrt{x}}{e^{x+\alpha} - 1} dx = \sum_{n=1}^{\infty} \frac{e^{-n\alpha}}{n^{3/2}}$$
(4)

 $\lambda_T = \left(\frac{2\pi\hbar^2}{mk_BT}\right)^{1/2}$ は Thermal de Broglie length である . 高温ではほとんどの粒子は励起準

位にあり $N_1 \approx N$ である.

 $F_{3/2}(\alpha)$ は $\alpha = 0$ で最大値 $F_{3/2}(0) = \sqrt{\pi}/2 = 2.612$ をとり, α に対して単調に減少する関数である.励起準位に入りうる最大の粒子数は

$$N_1^{Max}(T) = 2.612 \frac{L^3}{\lambda_T^3}$$
(5)

である.温度の低下とともに λ_T が増大するとこれは減少し, $N_1^{Max}(T) = N$ となる温度 $T_{\rm BE}$ 以下になると励起準位には収容しきれなくなる

$$k_{\rm B}T_{\rm BE} = \frac{2\pi\hbar^2}{m} \left(\frac{N}{2.612L^3}\right)^{2/3} = \frac{2\pi\hbar^2}{m} \left(\frac{n}{2.612}\right)^{2/3}$$
(6)

$$T < T_{\rm BE} \operatorname{Telt}, \qquad N_1(T) = \left(\frac{T}{T_{\rm BE}}\right)^{3/2},$$

$$N_0(T) = N - N_1(T)$$

$$= N \left(1 - \left(\frac{T}{T_{\rm BE}}\right)^{3/2}\right) \qquad (7)$$

London は,液体ヘリウムの超流動の本質がボース凝縮にあると洞察した. 実際,ヘリウム4の質量 $m = 6.6 \times 10^{-24}$ gと液体ヘリウムの密度 $n = 2.1 \times 10^{22}$ cm⁻³を用いると $T_{\rm BE} = 3K$ となり,オーダーとしては合っている.

しかし,いくつかの相違点がある.

たとえばT_{BE}は粒子密度 n の 3/2 乗に比例(3次元の場合)して増大するが,

現実のヘリウムの相図では,圧力とともに T_λ が低下している.

理想ボース気体ならばその比熱は $T^{3/2}$ に比例するはずであるが,液体ヘリウムの低温比熱 は $\propto T^3$ である.

二流体モデル

超流動 粘性の測定

細管(キャピラリー)を通る流れ

超流動ヘリウムが2つの流体(超流動成分と常流動成分)からなっていると考えると説明 がつく.

$$\boldsymbol{\rho} = \boldsymbol{\rho}_s + \boldsymbol{\rho}_n$$
$$\mathbf{j} = \boldsymbol{\rho}_s \mathbf{v}_s + \boldsymbol{\rho}_n \mathbf{v}_n$$

内部対流(Internal Convection)

超流動ヘリウム中に熱源があるとき,エントロピーと運ぶ常流動成分が熱源から遠ざかる 向きに流れ,これを補償するように超流動成分が熱源に向かって流れる熱対抗流(Thermal Counter Flow)が起こることによって,効率的に熱が運ばれ,見かけの熱伝導率は極めて 大きなものとなる.正味の流れはゼロ

$$\mathbf{j} = \rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n = 0$$

なので, $\mathbf{v}_n = -\frac{\rho_s}{\rho_n} \mathbf{v}_s$ である.

熱機械効果(Themomechanical Effects)

熱圧力効果

スーパーリークでつながれた2つの容器の間に温度差△Tがある場合,低温側から高温側に 向かって超流動成分の流れが生じる.化学ポテンシャルの差がなくなるところで平衡に達 する

$$d\mu = \frac{1}{\rho}dp - sdT = 0 \quad \Rightarrow \quad \Delta p = -\rho \, s \, \Delta T$$

スーパーリークを通して噴水効果 (Fountain Effect)

超流動流体力学

通常の流体は , ρ , *s*, *v* という5つの変数 (それぞれ(\mathbf{r} , *t*)に依存)で記述される . 2 流体モデルでは ρ , *s*, *v*_s, *v*_n の8つを考えることになる .

それらの方程式は

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n) = 0$$

$$\frac{\partial (\rho s)}{\partial t} + \nabla \cdot (\rho s \mathbf{v}_n) = 0$$

$$\frac{D_s \mathbf{v}_s}{Dt} = -\nabla \mu \qquad \qquad \frac{D_s}{Dt} \equiv \frac{\partial}{\partial t} + (\mathbf{v}_s \cdot \nabla)$$

$$\frac{\partial}{\partial t} (\rho_s v_{s,i} + \rho_n v_{n,i}) + \frac{\partial}{\partial r_j} (\rho \delta_{ij} + \rho_s v_{s,i} v_{s,j} + \rho_n v_{n,i} v_{n,j}) = 0$$
(1)

上から順に,

連続方程式(質量の保存) エントロピーの保存 超流体の運動方程式 (超流動成分は化学ポテンシャルの勾配に応答する) 流体全体の運動方程式(運動量の保存)

これらに $\rho_n, p, \mu \in \rho, s, (\mathbf{v}_s - \mathbf{v}_n)^2$ で表わす状態方程式を加えて解く.

$$d\mu = \frac{1}{\rho} dp - sdT - \frac{1}{2} \frac{\rho_n}{\rho} d(\mathbf{v}_s - \mathbf{v}_n)^2$$

$$\Rightarrow dp = \rho d\mu + \rho s dT + \frac{1}{2} \rho_n d(\mathbf{v}_s - \mathbf{v}_n)^2$$
(2)

静止している超流動へリウム(
$$\mathbf{v}_s = 0, \mathbf{v}_n = 0$$
)を伝播する音波

$$\rho = \rho_0 + \delta\rho(\mathbf{r}, t), \quad s = s_0 + \delta s(\mathbf{r}, t)$$

$$p = p_0 + \delta p(\mathbf{r}, t), \quad T = T_0 + \delta T(\mathbf{r}, t)$$

$$\mathbf{v}_s = \delta \mathbf{v}_s(\mathbf{r}, t), \quad \mathbf{v}_n = \delta \mathbf{v}_n(\mathbf{r}, t)$$
とおいて,これらを上の2流体方程式に代入し,2次以上の項を落とすと,

$$\frac{\partial \delta \rho}{\partial t} + \rho_{s,0} \nabla \cdot \delta \mathbf{v}_{s} + \rho_{n,0} \nabla \cdot \delta \mathbf{v}_{n} = 0$$

$$\rho_{0} \frac{\partial \delta s}{\partial t} + s_{0} \frac{\partial \delta \rho}{\partial t} + \rho_{0} s_{0} \nabla \cdot \delta \mathbf{v}_{n} = 0$$

$$\frac{\partial \delta \mathbf{v}_{s}}{\partial t} - s_{0} \nabla \delta T + \frac{1}{\rho_{0}} \nabla \delta p = 0$$

$$\rho_{n,0} \frac{\partial \delta \mathbf{v}_{n}}{\partial t} + \rho_{s,0} \frac{\partial \delta \mathbf{v}_{s}}{\partial t} = -\nabla \delta p$$
(4)

第3式と第4式を $\delta v_s, \delta v_n$ について対称的な形にすると

$$\rho_{s,0} \frac{\partial \delta \mathbf{v}_s}{\partial t} = -\frac{\rho_{s,0}}{\rho_0} \nabla \delta p + \rho_{s,0} s_0 \nabla \delta T$$

$$\rho_{n,0} \frac{\partial \delta \mathbf{v}_n}{\partial t} = -\frac{\rho_{n,0}}{\rho_0} \nabla \delta p - \rho_{s,0} s_0 \nabla \delta T$$
(5)

両者を足すと

$$\frac{\partial}{\partial t}(\rho_{s,0}\delta \mathbf{v}_s + \rho_{n,0}\delta \mathbf{v}_n) = -\nabla \delta p \tag{6}$$

これと第1式の連続方程式とから

$$\frac{\partial^2 \delta \rho}{\partial t^2} = \nabla^2 \delta p \tag{7}$$

を得る.

もうひとつの方程式は(5)式から Spを消去して

$$\rho_{n,0} \frac{\partial}{\partial t} (\delta \mathbf{v}_s - \delta \mathbf{v}_n) = \rho_0 s_0 \nabla \delta T$$
(8)

一方,(4)式の第1,第2式から,

$$\rho_{n,0} \nabla \cdot (\partial \mathbf{V}_s - \partial \mathbf{V}_n) = \frac{\rho_0}{\rho_{s,0} s_0} \frac{\partial \delta s}{\partial t}$$
(9)

を得るので,これらを組み合わせて

$$\frac{\partial^2 \delta s}{\partial t^2} = \frac{\rho_{s,0}}{\rho_{n,0}} s_0^2 \nabla^2 \delta T$$
(10)

p,Tを ρ,s で表すことにすると

$$\frac{\partial^2 \delta \rho}{\partial t^2} = \left(\frac{\partial p}{\partial \rho}\right)_s \nabla^2 \delta \rho + \left(\frac{\partial p}{\partial s}\right)_\rho \nabla^2 \delta s$$

$$\frac{\partial^2 \delta s}{\partial t^2} = \frac{\rho_{s,0}}{\rho_{n,0}} s^2 \left[\left(\frac{\partial T}{\partial \rho}\right)_s \nabla^2 \delta \rho + \left(\frac{\partial T}{\partial s}\right)_\rho \nabla^2 \delta s \right]$$
(11)

という連立の波動方程式を得る.

$$\delta \rho = \rho_1 \exp[i(\omega t - kx)]$$
 $\delta s = s_1 \exp[i(\omega t - kx)]$
 $\omega^2 = k^2 \left[\left(\frac{\partial p}{\partial \rho} \right)_s + \left(\frac{\partial p}{\partial s} \right)_\rho \right]$
 $\omega^2 = k^2 \frac{\rho_{s,0}}{\rho_{n,0}} s^2 \left[\left(\frac{\partial T}{\partial \rho} \right)_s + \left(\frac{\partial T}{\partial s} \right)_\rho \right]$
(13)

 $\omega = ck \ge b\tau$

$$c^{2} = \left(\frac{\partial p}{\partial \rho}\right)_{s} + \left(\frac{\partial p}{\partial s}\right)_{\rho} \qquad \Rightarrow \quad \frac{c^{2}}{c_{1}^{2}} - 1 = \left(\frac{\partial p}{\partial s}\right)_{\rho} / \left(\frac{\partial p}{\partial \rho}\right)_{s}$$

$$c^{2} = \frac{\rho_{s,0}}{\rho_{n,0}} s_{0}^{2} \left[\left(\frac{\partial T}{\partial \rho}\right)_{s} + \left(\frac{\partial T}{\partial s}\right)_{\rho} \right] \qquad \Rightarrow \quad \frac{c^{2}}{c_{2}^{2}} - 1 = \left(\frac{\partial T}{\partial \rho}\right)_{s} / \left(\frac{\partial T}{\partial s}\right)_{\rho} \qquad (14)$$

$$c_{1}^{2} = \left(\frac{\partial p}{\partial \rho}\right)_{s} = \frac{1}{\rho_{0}\kappa_{s}} \qquad c_{2}^{2} = \frac{\rho_{s,0}s_{0}^{2}}{\rho_{n,0}} \left(\frac{\partial T}{\partial s}\right)_{\rho} = \frac{\rho_{s,0}s_{0}^{2}}{\rho_{n,0}} \frac{T}{C_{V}}$$

$$\left(1 - \frac{c^{2}}{c_{1}^{2}}\right) \left(1 - \frac{c^{2}}{c_{2}^{2}}\right) = \left(\frac{\partial p}{\partial s}\right)_{\rho} \left(\frac{\partial T}{\partial s}\right)_{\rho} / \left(\frac{\partial p}{\partial \rho}\right)_{s} \left(\frac{\partial T}{\partial \rho}\right)_{s} \qquad (15)$$

$$= 1 - \frac{C_{V}}{C_{p}} \approx 0$$

であるので, $\omega = c_1 k$ の振動モード(第1音波)と $\omega = c_2 k$ の振動モード(第2音波)とが(ほぼ独立 に)存在する.

第1音波は密度(圧力)の振動で通常の音波,

$$c = c_1, \quad \mathbf{v}_s = \mathbf{v}_n$$
$$\delta s = 0, \quad \delta T = 0$$

第1音波では $\delta \rho_s \ge \delta \rho_n$ は同位相で振動する.

第2音波ではそれらは逆位相で振動し全密度 $\rho = \rho_s + \rho_n$ は一定に留まり,密度ゆらぎはない.

$$c = c_2, \quad \rho_s \mathbf{v}_s + \rho_n \mathbf{v}_n = 0$$

$$\delta \rho = 0, \quad \delta p = 0$$

第2音波はエントロピー(温度)の振動である.第2音 波はヒーターで励起し,温度計で検出することができる.

第4音波

スーパーリークの中では常流動成分は動けず ($\mathbf{v}_n = 0$), 超流動成分のみが振動する.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho_s \mathbf{v}_s) = 0$$

$$\rho_s \frac{\partial \delta \mathbf{v}_s}{\partial t} + \nabla \mu = 0 \qquad c_4^2 = \frac{\rho_s}{\rho} c_1^2 + \frac{\rho_n}{\rho} c_2^2 \qquad (16)$$

$$\frac{\partial \rho s}{\partial t} = 0$$

140

120

 $c_2(m/s)$

浅い液体の表面波

第3音波

$$\frac{\omega^2}{k^2} = \left(\frac{f}{k} + \frac{\sigma}{\rho}k\right) \tanh(kd) \implies \frac{\omega^2}{k^2} \approx fd \quad (k \to 0)$$

常流体成分が動けないようなヘリウム薄膜では $\mathbf{v}_n = 0$ であり,振動するのは超流動成分のみ.

$$c_3^2 = \frac{\rho_s}{\rho} fd \tag{17}$$

振動の腹と節では ρ_s/ρ_n が異なるので第3音波は温度ゆらぎを伴う. 実際の温度変化は局所的な蒸発・再凝 集によって緩和される.

飽和蒸気圧下の膜厚

$$\phi(d(z)) + gz = \phi(d(0))$$
$$\phi(d) = -\frac{\alpha}{d^n}$$

(18)

薄い膜ではn=3,厚い膜ではn=4.z=0では $d=\infty$ で $\phi(d(0))=0$ であるから 高さz=hでの厚さは

$$\frac{\alpha}{d^n} = gh \implies d = \left(\frac{\alpha}{gh}\right)^{1/n}$$
(19)

$$fd = \left(\frac{d\phi(y)}{dy}\right)_{y=d} d = n\frac{\alpha}{d^n} = ngh \ \epsilon(17) \ \exists \ c_3^2 = \frac{\rho_s}{\rho} ngh$$
(20)

第2,3,4音波は超流動密度 ρ_s を測定する手段として使われる.

ヘリウム薄膜の超流動転移

渦系の自由エネルギーは

$$F = \pi K_0 \ln\left(\frac{R}{a}\right) - k_B T \ln\left(\frac{R}{a}\right)^2 \qquad k_B T_{\rm KT} = \frac{\pi K_0}{2}$$
において自由な渦が励起される
$$\frac{\rho_s(T_{\rm KT})}{k_B T_{\rm KT}} = \frac{2}{\pi} \frac{m^2}{\hbar^2}$$

臨界速度

理想ボース気体のボース凝縮相は超流動にはならない.

速度 v_sの超流動流が減衰するかどうかは,流れから運動量を奪う素励起がエネルギー的に許されるか否かにかかっている.

液体が静止していて,質量 M の壁が速度 V で動いているとする. \mathcal{E}_p というエネルギーの素励起によって壁の速度が V' に変化したとする.運動エネルギーと運動量の保存則は

$$\frac{1}{2}MV^{2} = \frac{1}{2}MV'^{2} + \varepsilon_{p}$$

$$MV = MV' + p$$
(21)

これらから V'を消去すると

$$\varepsilon_{\mathbf{p}} - \mathbf{p} \cdot \mathbf{V} + \frac{p^2}{2M} = 0 \tag{22}$$

M は非常に大きいので左辺第3項は無視できる.

 $arepsilon_{\mathbf{p}} < \mathbf{p} \cdot \mathbf{V}$ ならば素励起がある.臨界速度は

$$V_c = \left[\frac{\varepsilon_p}{p}\right]_{\rm Min} \tag{23}$$

これは超流動の破れに対する Landau 条件と呼ばれる.

自由粒子であれば $\varepsilon_{\mathbf{p}} = p^2/2m$ であるから $V_c = 0$ となってしまう.つまり理想ボース気体のボース凝縮体は超流動にはならない.

液体ヘリウムではヘリウム原子間の相互作用が重要であり,励起スペクトルは

$\int cp$	$p \approx 0$	(24)
$\varepsilon_p = \left\{ \Delta + \frac{(p - p_0)}{2\mu} \right\}$	$p \approx p_0$	

という形(Landau spectrum)をとる. この場合の臨界速度は $V_c \approx \frac{\Delta}{p_0}$ 程度と見

積もられる.

しかし実際の臨界速度はこれよりもかな り小さい.それはより低エネルギーの励起 である渦が臨界速度を支配しているため

である.

フォノンとロトン

図の励起スペクトルの特徴は(11)式で表した2つの特徴的な部分からなる.

長波長部分はフォノン(phonon), $p_0/k_B \approx 1.9 \overset{\circ}{A}^{-1}$ 付近の極小部分はロトン(roton)と呼ばれる.この励起スペクトルは中性子非弾性散乱の実験から決められる. 自由エネルギーは

$$F = -\frac{L^{3}k_{B}T}{(2\pi)^{3}} \int_{0}^{\infty} \ln[1 - \exp(-\varepsilon_{k}/k_{B}T)] 4\pi k^{2} dk$$
(25)

により求められる.

T < 0.5Kではフォノン部分の寄与がほとんどで

$$C_{ph} = \frac{2\pi k_B^4}{15\rho \hbar^3 c^2} T^3$$
(26)

という Debye 型の比熱となる.

より高温では励起スペクトルの極小部分(ロトン部分)の寄与が顕著になり、比熱など熱力学量の温度変化は $\exp[-\Delta/k_{_B}T]$ という因子に支配される.

常流体密度は

$$\rho_{\rm n,phonon} = \frac{2\pi^2 k_B^4}{45\hbar^3 c^5} T^4$$
(27)

$$\rho_{\rm n,roton} = \frac{2\mu^{1/2} p_0^4}{3(2\pi)^{3/2} (k_B T)^{1/2} \hbar^3} \exp\left[-\frac{\Delta}{k_B T}\right]$$
(28)

 $\mathbf{v}_s = \frac{\hbar}{m} \nabla \theta$

単連結でない領域では循環がゼロでない場合がある.

位相の1価性から $\oint_C \nabla \theta \, d\mathbf{s} = 2\pi n$ であるから,

$$\kappa \equiv \oint_C \mathbf{v}_s \cdot d\mathbf{s} = \frac{\hbar}{m} \oint_C \nabla \theta \, d\mathbf{s} = \frac{\hbar}{m} 2\pi n = n \frac{h}{m}$$
$$\frac{h}{m} = 0.998 \times 10^{-3} \,\mathrm{cm}^2/\mathrm{s} \qquad (31)$$

静止したリングを流れる永久流

循環(rotation): $\kappa \equiv \oint_C \mathbf{v}_s \cdot d\mathbf{s}$

irrotational flow : $\nabla \times \mathbf{v}_s = 0$

巨視的波動関数 $\Psi = |\Psi| \exp(i\theta)$

 $T > T_{\lambda}$ で容器を回転させておいて,低温に 提げてから容器を静止させる.

n=0以外の状態は準安定であるが,nが変 化するには高いポテンシャル障壁を越えな ければならないため、そのような遷移は事実 上起こらない.

(30)

超流動ヘリウムの中にワイヤーを張り,その振動を測定する.ワイヤーに沿って渦糸があ ると振動数の変化がある.

流速Vの流れの場に置かれた循環 κの渦にはマグナス力

 $\mathbf{f}_{M} = \boldsymbol{\rho}_{s} \mathbf{\kappa} \times \mathbf{V}$

が働く.

ワイヤーに直角な磁場をかけ,ワイヤーに電流を流すとワイヤーの振動が励起される. ワイヤーが渦を伴っていないときの基準振動は(右回りと左回りの)2 重縮退している.

渦があると縮退が解け,振動数の分裂が起こるので,それを測定する ことにより $\Delta v = \rho_s \kappa / 2\pi W$ 循環 κ がわかる(Wはワイヤーの質量+ 流体の仮想質量). κ が h/mの整数倍になっていることが見出されて いる.

渦糸のエネルギー(単位長さあたり)は

$$\varepsilon_{V} = \int \frac{1}{2} \rho_{s} v_{s}^{2} dr^{2} = \int_{a}^{R} \rho_{s} v_{s}^{2} \pi dr = \frac{\rho_{s} \kappa^{2}}{4\pi} \ln\left(\frac{R}{a}\right)$$
(33)

であって, κ の2乗に比例するので,nの大きな渦は励起されにくい.

回転バケツの実験

静止した超流動ヘリウムを入れたバケツ を回転させ,その回転速度を上げてゆくこ とを考える.

ある程度の回転速度までは,超流動成分は 静止したまま(超伝導のマイスナー状態に 相当)であるが,臨界角速度以上になると 回転を始め,十分大きな回転速度では剛体 回転と同様になる.

Zero

Unit circulati

cinculation

vorticity $\boldsymbol{\omega} = n_V \kappa$ は単位面積あたりの渦糸の数を表す ($\nabla \times \mathbf{v}_s$ の平均値).

半径 R のバケツの中の循環: $n_{\nu}\kappa\pi R^2$

角速度 Ω の剛体回転ではこれが $2\pi R \cdot R\Omega$ に等しくなるから, $n_V = 2\Omega/\kappa$.

vorticity でいうと $\sigma = 2\Omega$.

バケツが角速度 Ω で回転しているとする.角運動量をLとすると,自由エネルギーは $F' = F - L\Omega$

渦糸の数は $N_v = \frac{2\pi R^2 \Omega}{\kappa}$ 自由エネルギーのうち $N_v \ge \kappa$ に依存する部分だけを抜き出す

$$F'' = N(\varepsilon_v - l_v \Omega)$$

$$F'' = \frac{\rho_s R^2 \Omega}{2} \kappa \left(\ln \frac{R}{a} - \frac{1}{2} \right)$$
(34)

$$l_{v} = \int_{a}^{R} \rho_{s} r v_{s} 2\pi r dr = \int_{a}^{R} \rho_{s} r \frac{\kappa}{2\pi r} 2\pi r dr = \frac{1}{2} \rho_{s} \kappa R^{2}$$
(35)

最初の渦糸が作られるのは $\varepsilon_V = l_V \Omega$ の時で,

$$\varepsilon_{V} = \frac{\rho_{s}\kappa^{2}}{4\pi}\ln\left(\frac{R}{a}\right)$$
であるから
 $\Omega_{c1} = \frac{h}{2\pi nR^{2}}\ln\frac{R}{a}$ (36)

$$R = 1$$
cm とすると $\Omega_{c1} \approx 10^{-3}$ rad/s

回転速度とともに渦糸の数が増え,それらは 三角格子を形成する.渦糸密度が十分大きく なれば,剛体回転と変わらなくなる.

渦輪 (vortex ring)

半径 R の渦輪の速度およびエネルギーは

$$v = \frac{\kappa}{4\pi R} \left[\ln \frac{8R}{a} - \frac{1}{4} \right]$$

$$E = \frac{1}{2} \rho \kappa^2 R \left[\ln \frac{8R}{a} - \frac{7}{4} \right]$$
(37)

$$z = \frac{\rho \kappa^{3}}{8\pi} \left(\ln \frac{8R}{a} - \frac{1}{4} \right) \left(\ln \frac{8R}{a} - \frac{7}{4} \right) \approx \text{constant} \quad (38)$$

S

MS

液体ヘリウムと電子

ヘリウム原子の電子構造: (1s)², 2s,2p軌道は約 20eV上にある. 液体ヘリウムの電子親和力は負である.伝導帯の底は真空のゼロ準位よりも約 1eV 上にある. る.

電子バブル

液体ヘリウムに打ち込まれた電子は自らの周りに真空(泡)をつくってその中に局在する (電子泡(electron bubble)).

ここで $E_{e,i}$ は半径Rの球に閉じ込められた

電子の準位 j のエネルギー,

 $\sigma = 0.36 \text{ erg/cm}^2$ は表面張力 . 第 1 項は半径を拡げ , 他の項は縮める . 釣り合いで決まる半径は 常圧 (p = 0)では ,

$$E = \frac{\hbar^2}{2m} \frac{1}{R^2} + 4\pi R^2 \sigma \tag{40}$$

を最小にする条件で決まり, R_≈1.7 nm

固化直前 (p = 20 bar) では $R_{-} \approx 1.1$ nm . 電子バブルの有効質量は $m_{-}^{*} \approx 200 m_{He}$

スノーボール(snowball)

一方,正電荷をもつイオンが打ち込まれると,それは周囲のヘリウムイオンを部分的に分 極させて引き付ける.半径 R_+ 内は固体ヘリウムが形成される.その半径は

$$R_{+} = \left[\frac{(\varepsilon - 1)e^2}{8\pi\varepsilon^2(p_m - p)}\right]^{1/4}$$
(41)

常圧では $R_+ \approx 0.6 \text{ nm}$, $m_-^* \approx 50 m_{\text{He}}$. 圧力下でスノーボールの半径は増大する.

図 6:液体ヘリウム表面の内側に打ち込まれた電子バブルとスノーボール

超流動ヘリウム中のイオンの移動度
$$\mu_{\rm ion} = \frac{e\tau}{m^*}$$
 (42)

比較的高温ではロトン散乱,

$$n_{\text{roton}} = \frac{\pi^{3/2}}{\sqrt{2\hbar^3}} p_0^2 (\mu_0 k_B T)^{1/2} \exp\left(-\frac{\Delta}{k_B T}\right) \qquad \mu_{\text{roton}} \propto e^{-\Delta/k_B T}$$
(43)

低温ではフォノン散乱 $\mu_{\rm phonon} \propto T^{-3}$

渦輪とイオン

液面電子の移動度

$$\mu = \frac{e\,\tau}{m}$$

液面に平行な方向には自由電子. 比較的高温T >1K では,蒸気中のHe 原子による散乱が支配的. 低温では表面波(リップロン(ripplon))による散乱

$$\omega^2(q) = gq + \frac{\sigma}{d}q^3$$

極めてクリーンな系である.

最近では,液面電子を使って量子ビットをつくる という話が脚光を浴びている.

液面電子系の多体効果

液面に溜めることのできる電子密度は

 $n < 3 \times 10^8 \text{ cm}^{-2}$ 程度.

それを超すと,液面は電磁流体力学的に不安定性になる. ミクロには電子にディンプルが伴っている.

2次元古典プラズマ $\Gamma = \frac{e^2 n^{1/2}}{k_B T}$:ポテンシャルエネルギーと運動エネルギーの比

「≈130で結晶化(古典 Wigner 結晶) 実験的に観測されている.

