

ワークショップ「ナノ構造超伝導体とその応用」 Nov. 26-27 (2007) @ 東北大学金属材料研究所

空間変調磁場下の 超伝導ネットワークの相転移

東京大学物性研究所 佐野浩孝、遠藤彰、勝本信吾、家泰弘

超伝導ネットワークの相転移				
GL オーダーパラメータ $\psi = \psi e^{i\theta}$ 2 つの自由度 = 2 つの相転移				
常伝導状態 / <i>ψ</i> /=0	超伝導状態 ψ >0			
	<i>θ</i> :揃っ ⁻	ていない	θ: 揃っ	ている
T _{MF} High T 平均場的相転移 = 線形GL方程式		T _c 位相の揃 = 2D XY	う相転移 モデル	Low T
超伝導ネット	·ワークの特+	Ę		

- ・2つの相転移が離れている → 独立に調べられる
- 外部磁場により特徴的な変化(α = 磁束の充填率)

平均場的相転移

E/1 (

0.75

- 常伝導 超伝導…線形GL方程式 $T_{\rm MF}(\alpha) = T_{\rm MF}(0) \left(1 - \frac{\xi(0)^2}{s^2} \arccos\left(\frac{\varepsilon(\alpha)}{4} \right) \right)$
- Hofstadter Butterflyの最大値に対応
- α=1の周期性

→*T*_{MF}の振動 = Little-Parks 振動

位相の相転移

オーダーパラメータの位相=XY スピン ···XYモデルの相転移

磁場 = 0 → KTB転移 • 外部磁場=フラストレーション $\alpha = \phi / \phi_0 = \oint A_{ij} ds$ →相転移が変化 (詳細は未解明)

<u> 渦糸配置が2重に縮退 = XY スピン + Ising スピン</u>

試料

- ネットワーク: A1
 300×300
 - 周期 500 nm
 - 線幅 50 nm
 - 厚さ 40 nm
- ドット:Co
 - -縦 150 nm
 - -横 350 nm
 - -厚さ 80 nm

空間変調磁場の制御

- *α*, *β* の独立制御→クロスコイルマグネット
- 磁化の大きさは固定、角度で調節
 - sin 成分だけが効く
 - ヒステリシスの影響を受けない

Hofstadter Butterfly

結果:Little-Parks 振動

*I-V*特性

*I-V*特性: *V~I^{a(T)}* a(*T*) に位相の秩序の情報 *a* > 1 → *R* → 0 (*I* → 0) → 磁束なし → 秩序状態 *a* = 1 → *R* = Const. → 磁束あり → 無秩序状態

Ø) α = β = 0 : KTB 転移

(*T* < *T_c*) → 1 (*T_c* < *T*) @ *T* = *T_c* ··· ユニバーサルジャンプ

結果: I-V 特性

 $\beta = 1/2 \cdots$ KTB 転移

 $\beta = 0 \cdots$ FFXY モデル

ドメインのみ・・・位相を乱さない キンクの相転移@ $T = T_{kink}$ ドメイン + キンク・・・位相を乱す

$\beta = 0$: FFXY モデル

 $T < T_{kink}$: ドメインは存在するが、それによる位相の乱れはない $T \sim T_{kink}$: ドメイン + キンク = 周囲の位相が乱される → KTB 転移より低温で、より大きなジャンプを伴った相転移

 $\beta: 0 \rightarrow 1/4$ での変化

$\beta: 0 \rightarrow 1/4$ での変化

β の導入=ドメインサイズの縮小 キンク発生による影響が系全体に波及しに〈〈なる T_{kink} 近傍でのa(T)の減少が緩やかに

β: 1/4 → 1/2 での変化

β: 1/4 → 1/2 での変化

- *T_c* = *T_{KTB}* · · · · 渦対だけが相転移に寄与
 → なぜKTB転移と同じ振る舞いではない?
- ・ 渦糸 = 小さなドメイン・・・ドメインに近づくと吸収される
 → β小(ドメイン大)で a (T < T_c) 大

まとめ

- Little-Parks 振動のβによる変化を観測した
 α = 1/2 での位相の相転移ついて調べた
- $\beta = 0$: キンクの相転移によりKTB 転移が誘発

 βの増加=ドメインの励起の抑制

 → 相転移におけるドメインの役割を調べた
 ・境界上をキンクが動くことで位相を乱す
 (0<b<1/4 で支配的)

 渦糸を吸収することで位相の乱れを抑える
 (1/4 < b < 1/2 で支配的)

β=1/2 : **通常の**KTB 転移

H. Sano et. al., J. Phys. Soc. Jpn. 76, 094707 (2007).