Superconducting Wire Network under Spatially Modulated Magnetic Field

> Hirotaka Sano, Akira Endo, Shingo Katsumoto, Yasuhiro Iye

Institute for Solid State Physics, University of Tokyo, Japan

Overview

- Previous studies
 - -Critical temperature \rightarrow Little-Parks oscillation
 - -I-V Characteristics \rightarrow The nature of phase transition

<u>All studies = under uniform field</u>

Magnetic Frustration

Frustration α = Number of flux through a unit cell

Field Modulation

Control β by <u>rotating</u> magnetization ($B_{//}$ =const.)

Sample

Al network – 70 nm wide

- 35 nm thick
- Period = 500 nm
- 120 ×120 cells

Co dots - 200 nm × 130 nm - 80 nm thick

Experiment

•Magnetic Field Cross coil magnet system Sample \perp solenoid coil Solenoid coil $\rightarrow \alpha$ Split coil $\rightarrow \beta$

• Temperature Liq. ⁴He + RP $T_{min} \sim 1.3 \text{ K} \Delta T \sim 1 \text{ mK}$

Little-Parks Oscillation

W. A. Little et al., Phys. Rev. Lett. 14, 2239 (1976).

FIG. 6. Lower trace: variation of resistance of tin cylinder at its superconducting transition temperature as a function of magnetic field. Upper trace: magnetic field sweep.

Period: $\phi_0 = \frac{2\pi\hbar}{2e} = 2.07 \times 10^{-15} \text{ Tm}^2$

Square Lattice

D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976). B. Pannetier et al., Phys. Rev. Lett. 53, 1845

Under Checkerboard Modulation

Y. Iye et al., Phys. Rev. B 70, 144524 (2004).

under checkerboard modulation

Change of magnetoresistance

α

T_c Measurement

- 1. Measure R(B) at fixed T, β
- 2. Repeat with sweeping T $\rightarrow R(B,T)$ at fixed β
- 3. Convert to $T_c(B)$ as $R(B, T_c) = R_c$
- 4. Repeat with changing β

 $\rightarrow T_c(B, \beta)$

5. Pick up one period and compare with calculation

Result

 $R(B,T) \rightarrow T_{c}(B)$

Comparison with calculation

Main feature : consistent detail : inconsistent

I-V Characteristics

- Superconducting state $R \rightarrow 0 \ (I \rightarrow 0)$
 - No free vortex without current

Phase transition

- \rightarrow Change of vortex dynamics
- Resistive state $R \neq 0 \ (I \rightarrow 0)$

- Free vortex exists without current

I-V characteristics = vortex dynamics

I-V Measurements

- DC measurement $\alpha = 0, 0.618, 1/2$ $\beta = 0, 1/2$
- α -independent
- Look like vortex glass transition
 → scaling analysis

Scaling Plot

- $\beta = 0$: Bad scaling plot - T_g is too close to T_c $\zeta \sim |T - T_c|^{-1/2}$ Good plot
- $\beta = 1/2$: Good scaling plot

VG transition at all α and β (Previous studies : KT at $\alpha = \beta = 0$)

Conclusion

Under checkerboard field modulation,

- Little-Parks oscillation
 - Consistent with calculation
- *I-V* characteristics

– VG transition is observed at all α and β

Inconsistency --- Lithographical irregularity