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Chapter 1

Introduction

Recent progress in epitaxial growth and micro-fabrication techniques has en-

abled us to design novel arti�cial stages for the study of basic electronic

processes in condensed matters. Two-dimensional electron gas (2DEG) at

the GaAs/AlGaAs hetero-interface o�ers a particularly well-de�ned stage

for transport studies. The reason lies in the following features of the

GaAs/AlGaAs 2DEG system.

1. The system is as close as one could hope, to the free electron picture.

As far as low energy phenomena are concerned, the energy band of the sys-

tem is isotropic in k-space and takes the form of �(k) = �h
2
k2

2m�
; m� = 0:067m0

being the e�ective mass for the GaAs conduction band. In state of the art

samples, the mean free path of electrons exceeds 10�4m at low temperature.

The achievement of high electron mobility owes much to the development

of the molecular beam epitaxy (MBE) growth and the modulation doping

technique.

2. The electron density can be tuned within a single sample.

The electron density is typically ne � 1015 � 1016m�2, the Fermi wave

length is kF � 108m�1 and the Fermi velocity is vF � 105m=s. We can control

the electron density of a sample by applying a gate bias or by illuminating

with an LED (persistent photo conductivity).

3. A tailored potential can be applied to the 2DEG by microfabrication.

We can fabricate a microstructure on the surface of the GaAs/AlGaAs

structure and create an arti�cial potential pro�le for the 2DEG. The idea of

an arti�cial potential modulation dates back almost a few decades. The work

was motivated by the notion that the arti�cial potential should induce a spec-

trum of minibands and minigaps, which depends on the potential amplitude
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6 Chapter 1. Introduction

and pro�le.

The in
uence of a magnetic �eld on transport has been intensively studied

by many groups in order to reveal complex structures of the spectrum. One

of the remarkable phenomena using an arti�cial potential is a magnetoresis-

tance oscillation due to the commensurability between the cyclotron radius

and the potential periodicity. The one observed using a one-dimensional elec-

trostatic potential modulation is called "Weiss oscillation" [1{3]. Weiss et.

al.[1] used an ingenious technique to impose a one-dimensional weak periodic

potential modulation on a 2DEG and showed the formation of minibands by

the magnetotransport experiment.

Experimentally the substitution magnetic �eld modulation for potential

one could be achieved [10{12]. The advantage of using magnetic modulation

is that it allows us to change the modulation amplitude without a�ecting

the density of 2DEG. This is a crucial point in addressing the issue of the

electron-electron scattering.

Electron-electron interaction is one of the most essential processes in

condensed matter physics. Although there has been much progress in the

understanding of the issue in so-called strongly correlated electron systems

such as heavy fermion metals, transition metal oxides and organic conduc-

tors, a truly quantitative comparison between theory and experiment seems

di�cult at the moment, because a full treatment of the relevant electron-

electron process requires detailed knowledge of the complex band structure

of real materials and the Umklapp matrix element. It is desirable, thus, to

�nd a simplest possible experimental system that exhibits the phenomenon

at issue.

The system under a magnetic modulation can be the ideal test ground

for quantitative study of electron-electron interaction. Therefore we focus

upon the transport in 2DEG under a spatially modulated magnetic �eld in

this work. We restrict ourselves to the case of regular periodic structure in

one direction, i.e. one-dimensional modulation.

The organization of this thesis is as follows. In the next chapter, we

describe Weiss oscillation and demonstrate the way how the electrostatic and

magnetic modulations can be controlled. In Chapter 3, we show the system

which is used in the work described in the subsequent chapters. In Chapter

4 which is main part of this thesis, we address ourselves to the e�ect of

electron-electron scattering in the system. We show that the present system
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is well suited to quantitative evaluation of the electron-electron scattering

process in the 2DEG. Chapter 5 gives the summary and concluding remarks.





Chapter 2

Magneto transport under

spatially modulated electric

and magnetic �elds

2.1 Electrostatic potential modulation

One of the phenomena observed in a two-dimensional electron gas (2DEG)

under a spatially modulated electro-static and/or magnetic �eld is a mag-

netoresistance oscillation due to the commensurability between the cy-

clotron radius and the potential periodicity. The one observed using a one-

dimensional electro-static potential modulation is called "Weiss oscillation"

[1{3]. The electrostatic potential modulation is obtained by applying bias

voltage to the periodic metallic gate as shown in Fig. 2.1. The e�ect manifests

itself as oscillation of �xx(B), which is periodic in 1=B. Here, x is the di-

rection of the potential modulation. Figure 2.2 shows the magnetoresistance

oscillations (B�0.4T) [2]. The minima of �xx(B) occur at

2Rc

a
= n+ '; n = 1; 2; 3; � � � : (2.1)

The content of this chapter was reported in M. Kato, A. Endo and Y. Iye: J. Soc. Jpn.

66 3178 (1997); M. Kato, A. Endo, S. Katsumoto and Y. Iye: PHYSICA B 249-251 753

(1998); M. Kato, A. Endo, S. Katsumoto and Y. Iye: Solid State Electronics 42, No.7-8

1121 (1998)
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10 Chapter 2. Magneto transport under spatially modulated . . .

Electro-static

modulation2DEG

Figure 2.1: Schematic drawing of 2DEG with a periodic metallic gate. Electrostatic

modulation is created by applying a bias voltage to the gate .

Figure 2.2: Magnetoresistance for current perpendicular ( �?; solid line) and parallel (

�k; dash-dotted line) as indicated in the inset, for a sample with ne = 3:16�1015m�2 , � =

130m2=Vs , and a=382nm (a) measured temperature T=2.2K, (b)calculated for T=2.2K

and 4.2K (�?;dashed line) ;�k shows no temperature dependence, using V0 = 0:3meV [2].



2.1. Electrostatic potential modulation 11

Here, a is the modulation period, Rc � �hkF=eB =
p
2�ne`2 is the cyclotron

radius of an electron at the Fermi surface, kF =
p
2�ne is the Fermi wave

number, ne is the electron density, and ` �
q
�h=eB is the magnetic length.

The phase term,' is equal to �1=4 for the case of electrostatic potential

modulation.

The occurrence of minima in �xx is interpreted in the following way. We

consider a 2DEG, in the x; y-plane, subjected to a magnetic �eld B along

the z direction, and an one-dimensional weak periodic potential U(x) along

the x direction. The one-electron Hamiltonian is

H =
1

2m�

(P+ eA)2 + U(x) (2.2)

where P is the momentum operator, m� is the e�ective mass and A is chosen

in the Landau gauge A= (0; Bx; 0). In the absence of the modulation, i.e.,

for U(x) = 0, the normalized eigen functions of eq. (2.2) are given by �n(x+

x0)exp(iyky)=
q
Ly, where �n(x) is the harmonic-oscillator wave function for

the Landau level index n centered at x0 = `2ky and Ly is the length of the

2DEG in the y direction. The corresponding eigenvalue is En = (n+1=2)�h!c,

which is degenerate with respect to the wave vector ky (!c = eB=m� is the

cyclotron frequency).

The modulation potential is approximated by the �rst Fourier component

of the periodic potential, i.e., U(x) = V0 cos 2�x=a, which is expected to be a

good approximation for the one induced by the metallic gate on the sample

surface. In this case, the exact eigenstates of eq. (2.2) are di�cult to obtain

in a closed analytical form. The amplitude of the potential modulation V0

estimated in the reported experiments is so small that we can evaluate the

correction to the energy levels by �rst-order perturbation theory using the

unperturbed wave functions given above. We obtain

En;ky =
�
n+

1

2

�
�h!c + V0e

�u=2Ln(u) cosKx0 (2.3)

where K = 2�=a, u = K2`2=2 and Ln(u) is the Laguerre polynomial of n-th

order, which oscillates as a function of its index n. The calculated energy

bands En;ky is plotted in Fig. 2.3. The potential U(x) lifts the degeneracy of

the Landau levels, and yields eigenstates j x0; ni which carry current in the

y direction,

hx0; n j vy j x0; ni = 1

�h

@En;ky

@ky
; (2.4)
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whereas hx0; n j vx j x0; ni = 0. This is the origin of the anisotropic transport

coe�cients observed in Fig. 2.2.

Figure 2.3: Calculated energy bands En;ky for B=0.5T, V0=1.5meV, a=100nm, and

material parameters of GaAs: solid lines, numerical diagonalization; thick dotted lines,

�rst order approximation; thin dotted lines, energies of zero bandwidth [2].

The instant position of a cyclotron orbiting electron can be written as

(x(t); y(t)) = (x0 + Rc cos!ct; y0 + Rc sin!ct). The time average of En;ky is

obtained by integrating eq.(2.3) along the cyclotron orbit,

ENF;ky =
�
NF +

1

2

�
�h!c +

1

2�

Z
2�

0

V0 cos(K(x0 +Rc cos!ct))d(!ct)

=
�
NF +

1

2

�
�h!c + V0J0(KRc) cosKx0; (2.5)

where NF is Landau index at the Fermi level and J0(x) is the Bessel function

of zero-th order. The 
at band condition of eq.(2.5), J0(KRc) = 0, is

2Rc

a
� n� 1

4
n = 1; 2; 3::: (2.6)

This leads to quenching of drift motion, i.e. vx = vy = 0, therefore, the

suppression of �yy causes the minima of �xx.



2.1. Electrostatic potential modulation 13

In another point of view[4], the periodic potential makes spatially modu-

lated electric �eld Ex(x) =
1
e
dU(x)
dx

= KV0
e

sinKx. An electron acquires local

drift velocity vdrift = (E�B)=B2 = (0; KV0
eB

sinKx) as illustrated in Fig. 2.4.

Its time average is

B

� � � �

�
� �

�����
�

�

�
�

�

Figure 2.4: Potential grating with a cyclotron orbit superimposed. An electron has local

drift velocity vdrift = (E�B)=B2

hvdrifty i =
KV0
eB

J0(KRc) sinKx0: (2.7)

The condition hvdrifty i = 0 is again given by eq.(2.6). In this case, the

conductivity �yy becomes zero and leads to the minima of resistivity �xx

(�xx / �yy=�
2
xy). The magnetoresistance oscillation is explained as a geomet-

rical resonance between the cyclotron motion and potential period.

Next we show expressions for the conductivity of this system[5]. In the

absence of the modulation we have electron group velocity vx = vy = 0. Since

the presence of the modulation lifts the ky degeneracy, we �nd

vy =
1

�h

@En;ky

@ky
= �

2V0
�hK

ue�u=2Ln(u) sinKx0 (2.8)

while vx = 0. The fact that vy is no longer zero gives the contribution ��� to

the conductivity. It takes the form

���(!) =
2e2�h

iLxLy

X
��0

f(E�)� f(E�0)

(E� � E�0)(E� � E�0 + �h! + i0+)
� h�jv�j�

0ih�0jv�j�i

(2.9)

which is given by the well-known Kubo-Greenwood formula. By using simple

damping approximation ! ! i=� , we �nd

�yy =
2e2�h

iLxLy

�

i�h

X
n;x0

df(E)

dE E=En(x0)
jhx0; njvyjx0; nij

2
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= 2
e2

�h

2�2

�h

`2

a2
�V 2

0 e
�u �

1X
n=0

[Ln(u)]
2[�

@f(E)

@E
]E=En

: (2.10)

The asymptotic expression for �yy is

�yy
�0

=
V0
EF

V0
�h!c

2

akF

�
F � 2e��=!c�fA(T=Tc) cos

�
2�EF

�h!c

�
cos2

�
2�Rc

a
�
�

4

��
(2.11)

where �f the quantum life time, �0 = nee
2�=m� the conductivity at zero

magnetic �eld,

F =
1

2
[1� A(T=Ta)] + A(T=Ta) cos

2
�
2�Rc

a
�
�

4

�
;

A(x) =
x

sinhx
;

kBTa =
�h!c
4�2

akF ;

kBTc =
�h!c
2�2

;

and
�xx
�0

=
h
1 + (!c�)

2
i �yy
�0

:

The second term in eq. (2.11) gives the aditional contribution to Shubnikov-

de Haas (SdH) oscillations. The �rst term F corresponds to the Weiss oscil-

lation. The minima of the term F occurs when cos2
�
2�Rc

a
� �

4

�
= 0, which

leads to eq. (2.6).

The amplitude of the SdH oscillation is determined by the characteristic

temperature Tc while that of the Weiss oscillation is governed by Ta. Since

Ta is much higher than Tc for typical experimental conditions, the Weiss

oscillation is more robust against temperature than the SdH oscillations.

2.2 Magnetic �eld modulation

Following discovery of the Weiss oscillation e�ect due to the electrostatic

potential modulation, a magnetic �eld analog of the e�ect was pursued [6{9].

Theories predict a similar magnetoresistance oscillation except that the phase

term in eq.(2.1) becomes ' = +1=4. Magnetic Weiss oscillation was observed

experimentally [10{12]. In those experiments, a spatially varying magnetic

�eld was produced by placing a suitably micro-patterned ferromagnet or

superconductor on the surface of the 2DEG specimen. P. D. Ye et. al. [11]

used ferromagnetic dysprosium metal gates, while S. Izawa et. al. [10] at
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our group used nickel to modulate the magnetic �eld. H. A. Carmona et. al.

[12] followed a di�erent path and used superconducting stripes.

We consider a 2DEG subjected to the magnetic �eldB=(B+B0 cosKx)ẑ.

The corresponding vector potential A in the Landau gauge is A=[0; Bx +

(B0=K) sinKx; 0]. The one-electron Hamiltonian is

H =
1

2m�

h
p2x + (py + eBx)2

i
+ (!0=K)(py + eBx) sinKx

+(m�!2
0=4K

2)(1� cos 2Kx): (2.12)

where !0 = eB0=m
�; !c = eB=m�. We consider the case where the modula-

tion amplitude is much smaller than the uniform magnetic �eld (B0 � B).

By using a �rst-order perturbation theory, we obtain

En;ky =
�
n+

1

2

�
�h!c + �h!0Gn(u) cosKx0

+(m�!2
0=4K

2)[1� e�2uLn(4u) cos 2Kx0]

Gn(u) = e�u=2[Ln(u)=2 + L1
n�1(u)]: (2.13)

Here, u = K2`2=2, Ln(u) is the n-th order Laguerre polynomial. We �nd

vy =
1

�h

@En;ky

@ky
= �

2!0
K

uGn(u) sinKx0 (2.14)

while vx = 0.

The same procedure as that used to obtain eq. (2.11) gives

�yy
�0

=
akF
2�2

�h!0
�h!c

�h!0
EF

�
G� 2e��=!c�fA(T=Tc) cos

�
2�EF

�h!c

�
sin2

�
2�Rc

a
�
�

4

��
(2.15)

where

G =
1

2
[1� A(T=Ta)] + A(T=Ta) sin

2
�
2�Rc

a
�
�

4

�
:

In this case, the minima of the magnetoresistance oscillation occur when

2Rc

a
= n +

1

4
n = 1; 2; 3; � � � : (2.16)

Figure 2.5 shows one of the �rt experimental observation of the magnetic

Weiss oscillation e�ect [10]. In this experiment, a periodic magnetic �eld

was produced by an array of Ni strips on the surface of a 2DEG specimen.

Figure 2.5-(a) shows the magnetoresistance traces in up- and down-sweep
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of the external magnetic �eld (applied normal to the 2DEG plane). The

hysteresis is due to that of the magnetization of the Ni strips. The arrows

mark the expected positions of resistance minima for the magnetic Weiss

oscillation. The magnetic Weiss oscillation is more clearly seen in Figure 2.5-

(b), which shows the di�erence between the traces for the up sweep and down

sweep.
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Figure 2.5: (a) Magnetoresistance of a device with period a=0.5�m at T=4.2K. The gate

bias Vg=500mV. Up-sweep and down-sweep traces are shown. The hysteresis originates

from that of magnetization for Ni stripes. (b) The di�erence between up- and down-sweeps

(hysterisys component of (a)) is shown. The arrows indicated the expected positions of

resistivity minima for magnetic Weiss oscillation (eq. (2.16))[10].
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2.3 Coexisting electric and magnetic modu-

lations

When the ferromagnetic stripes are magnetized by a vertical magnetic �eld,

the resulting magnetic modulation at the 2DEG plane is in-phase with the

electrostatic modulation as depicted in Fig. 2.6 (i.e. V (x) = V0 cos 2�x=a

and Bz(x) = B0 cos 2�x=a). The electrostatic modulation is always brought

2DEG

Ni

magnetic

modulation

electrostatic

modulation

Figure 2.6: Schematic drawings of the 2DEG with spatially modulated magnetic �eld.

When the ferromagnetic stripes are vertically magnetized, the resultant magnetic modu-

lation at the 2DEG plane is in-phase with the electrostatic modulation.

about in real system, even if we do not apply bias voltage to the striped gate.

An experimental obstacle encountered in the early studies of magnetic Weiss

oscillation was that the microstructured metal on the surface of a 2DEG

specimen produced a strain-induced potential modulation [7]. In the work

cited earlier [10], a gate bias is used to counteract and cancel the strain-

induced potential. Therefore, it is helpful to consider the case of "coexisting

electric and magnetic modulations" in order to understand the real system.

If the two types of modulation are spatially in-phase, (i.e. V (x) =

V0 cos 2�x=a and Bz(x) = B0 cos 2�x=a), the conductivity takes the form

�yy �
e2

�h

2�2�

�h

`2

a2
X
n

[�h!0Gn(u) + V0Fn(u)]
2 �

 
�
@f(E)

@E

!
E=En

: (2.17)

The asymptotic expression reads

�yy
�0

�
akF
2�2

�h!0
�h!c

�h!0
EF

(1 + �2)
�
1� A(T=Ta)

+
�
A(T=Ta)� 2e��=!c�fA(T=Tc) cos

�
2�EF

�h!c

��

� sin2
�
2�Rc

a
�
�

4
+ �

��
(2.18)
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where

� �
2�m�V0
akF�heB0

= tan�: (2.19)

The parameter � represents the ratio of the electrostatic potential modulation

amplitude V0 and the magnetic �eld modulation amplitude B0. Equation

(2.18) gives the oscillatory part of magnetoresistance

�xx / (1 + �2) sin2
�
2�Rc

a
�
�

4
+ �

�
: (2.20)

We see that the Weiss oscillation pattern shifts horizontally as a function of

�, in such a way that the positions of the resistance minima become

2Rc

a
= n +

1

4
�

1

�
arctan � (n = 1; 2; 3; :::): (2.21)

This sort of phase shift as a function of � has been experimentally veri�ed [16].

Figure 2.7-(a) shows that oscillation minima shift by changing the relative

strength of the two modulations. Figure. 2.7-(b) shows the comparison of

the observed phase shift ' and the parameter � evaluated from the analysis

of the Weiss oscillation amplitude. It is seen that the relation � = tan� is

well obeyed.
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Figure 2.7: (a)Magnetoresistance of a device with period a=0.5�m at T=4.2K is plotted

against 2Rc=a for a di�erent gate bias voltages; Vg=+500mV(bottom), 250, 50, -50, -110,

-125, -150, -175, and -200(top) mV. (b)The plot of relative amplitude parameter � versus

the phase term ' of the magnetoresistance oscillation. Dotted curve depict the relation

eq. (2.19) [16].





Chapter 3

The case of out-of-phase

electric and magnetic

modulations

3.1 Introduction

In the present work, we employ an experimental con�guration in which the

spatial phase relation between the electric and magnetic �elds is di�erent

from what we considered thus far. If the two types of modulation are �=2 out-

of-phase (i.e. V (x) = V0 cos 2�x=a and Bz(x) = B0 sin 2�x=a), the asymp-

totic expression for �yy is given by

�yy
�0

=
akF
2�2

�h!0

�h!c

�h!0

EF

�
G+ �2F � 2e��=!c�fA(T=Tc) cos

�
2�EF

�h!c

�
D
�
; (3.1)

where

D = �2 � (�2 � 1) sin2
�
2�Rc

a
�
�

4

�
:

In contrast to the in-phase case (eq. (2.18)), the parameter � is not contained

in the argument of the sin2-term. In this case, therefore, the Weiss oscillation

pattern is inverted without any phase shift, as the value of � is varied from

� � 1 to � � 1.

3.2 Experimental system

Samples used in the present study were fabricated from a GaAs/AlGaAs

single heterojunction wafer grown by molecular beam epitaxy (MBE). The

21
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structure of the sample wafer is shown in Fig. 3.1. The 2DEG in the wafer

Figure 3.1: The structure of a GaAs/AlGaAs single heterojunction wafer.

had the density ne=2.0�10
15 m�2 and mobility �=60 m2V�1s�1 at 1.5 K.

We can increase the density ne by illuminating with an LED mounted above

the sample. This e�ect is known as "persistent photo conductivity e�ect".

The depth of the heterointerface from the surface was 75 nm. A standard

Hall-bar pattern was de�ned by photolithography and wet etching. An array

of 60nm thick ferromagnetic (Ni or Co) strips with periodicity a (a=2 wide

and a=2 apart) was fabricated on the surface by electron-beam lithography,

vacuum deposition and lift-o� process. The ferromagnetic stripes were all

connected so that a gate bias could be applied to them. All the samples

used in our experiment had periodicity a = 500 nm (see Fig. 3.2). Recently,

it has been shown that the strain-induced potential is mostly due to the

piezoelectric coupling, and that it can be minimized by setting the direction

of modulation parallel to the [100] crystallographic direction [11, 14, 12].

Accordingly, we patterned the Hall-bar with the current direction aligned to

the [100] axis.

Transport measurements were carried out using a standard low-frequency

ac technique. The capability of precisely aligning the magnetic �eld direction

with respect to the 2DEG plane and to the stripe pattern was important.

The cross-coil magnet system used in the present work consisted of a 6T

split-coil superconducting magnet in combination with a small homemade

solenoid. It enabled us to independently control the horizontal and vertical

components of the magnetic �eld (Fig. 3.3).

A rotating sample holder sketched in Fig. 3.4, was used to adjust the angle
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�
B//= TNi or Co

B�

Figure 3.2: The structure of the sample with the modulation wavevector parallel to the

current channel. De�nition of azimuthal angle ' is also shown. When the ferromagnetic

stripes are horizontally magnetized, the resultant magnetic modulation at the 2DEG plane

exists.

�

Figure 3.3: Schematic diagram of cross-coil magnet system. The magnet system consisted

of a 7T split-coil superconducting magnet in combination with a 1T small homemade

solenoid. It enabled us to independently control the horizontal and vertical components

of the magnetic �eld.
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Figure 3.4: Schematic diagram of rotating sample holder. The azimuthal angle ' was

varied by turning the sample holder about its vertical axis. For each setting of ', the

horizontal alignment was readjusted by rotating the sample stage at an angle �.

of the sample-mounting stage so as to make the 2DEG plane horizontal. The

azimuthal angle ' between the horizontal magnetic �eld and the direction of

the modulation was varied by turning the sample holder about its vertical

axis. For each setting of ', the horizontal alignment was readjusted. The

misalignment component that was not accessible by the sample rotation stage

was compensated by putting a small o�set of the vertical �eld.

The horizontal magnetic �eld served to control the magnetization of the

ferromagnetic gate, and the vertical �eld was used for measurements of mag-

netotransport in the 2DEG. This scheme allowed us to keep the ferromagnetic

strips fully polarized while working with low (or even zero) perpendicular �eld

for the 2DEG.

3.3 The control of magnetic �eld modulation

When the ferromagnetic strips are magnetized by the horizontal magnetic

�eld, the resulting magnetic �eld modulation at the 2DEG plane is expected

to be out-of-phase with the electrostatic modulation as shown in Fig. 3.5 (i.e.

V (x) = V0 cos 2�x=a and Bz(x) = B0 sin 2�x=a).

This is seen in Fig. 3.6, which shows the magnetoresistance as a function
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2DEG

Ni

magnetic

modulation

electrostatic

modulation

Figure 3.5: Schematic drawings of the 2DEG with spatially modulated magnetic �eld.

When the ferromagnetic stripes are horizontally magnetized, the magnetic and electro-

static modulations are out-of-phase.

of the perpendicular magnetic �eld B? with zero gate bias and under a

constant parallel �eld Bk = 5 T at T=1.5K. This parallel magnetic �eld

is much higher than the saturation �eld B � 0:3 T for nickel, so that the

magnetization of the nickel stripes are �xed irrespective of the change in

B?. The di�erent traces are taken with the parallel �eld applied at di�erent

azimuthal angles '. The oscillations observed in the �eld range B? < 0:3 T

are the Weiss oscillations, while the shorter period oscillations at higher

B? are the Shubnikov-de Haas e�ect. No hysteresis appears because the

magnetization of the nickel strips is �xed by the constant horizontal �eld

Bk = 5 T. Note that only the magnetization component parallel to the

modulation direction is e�ective in generating the magnetic �eld modulation

at the 2DEG plane.

Figure 3.7 is a replot of the data in Fig. 3.6 as a function of 2Rc=a cal-

culated by using the value of ne as determined from the Shubnikov-de Haas

e�ect. The traces for ' � 60� have their minima at the positions in agreement

with eq. (2.16) (vertical dotted lines in the �gure). However, the minima turn

to maxim in traces for higher values of ', namely the Weiss oscillation dimin-

ishes in amplitude with increasing ' and is eventually inverted without any

phase shift. This peak/valley inversion corresponds to the behavior expected

for the case of the out-of-phase electrostatic and magnetic modulations.

We can evaluate the modulation amplitude by �tting the Weiss oscillation

with the theoretical formula given by eq. (3.1). Let us begin with the case

' = 90�. For this �eld orientation, the nickel stripes are magnetized along

their length so that the magnetic �eld modulation produced at the 2DEG
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plane is minimal. The Weiss oscillation observed in this con�guration is

mostly due to the strain-induced electrostatic modulation. The amplitude

of the strain-induced electrostatic modulation extracted from this data is

V0 = 0:10 meV, which is much smaller than V0 � 1:0meV when we patterned

the current direction aligned to [110] direction. By using the determined

value V0, the values of B0 for di�erent ' settings can be extracted from

these data. The results are plotted in Fig. 3.8 for the sample with Ni or Co

striped gate, which clearly shows the expected cos' dependence. The cos'

dependence shows that only the component of magnetization of ferromagnetic

strips parallel to the current is relevant to the amplitude of magnetic �eld

modulation B0. The maximum amplitude of the magnetic �eld modulation

at the 2DEG plane in these samples are found to be B0 = 19:1 mT for Ni

and B0 = 52 mT for Co.

Figure 3.6: Magnetoresistance of the device with Ni striped gate at T=1.5K for di�erent

settings of azimuthal angle ' of the parallel magnetic �eld de�ned as shown in the inset.

The value of ' is (from top to bottom) 0�, 30�, 45�, 60�, 75� and 90�. The traces are

vertically shifted for clarity.
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Figure 3.7: The data shown in Fig. 3.6 replotted as a function of 2Rc=a at T=1.5K.

The values of ' are (from top to bottom) 0�, 30�, 45�, 60�, 75� and 90�. The traces are

vertically shifted for clarity.

� �� �� ��

�

��

��

��

��

��

��

	
�

	�


�
�
��

�
�

ϕ�� ������

Figure 3.8: The cos'-dependence of the amplitude B0 of magnetic �eld modulation at

the 2DEG plane for the samples with Ni or Co ferromagnetic striped gate.
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3.4 The control of electric �eld modulation

The peak-valley inversion of Weiss oscillation can be also achieved by chang-

ing the gate bias. Figure 3.9 shows the magnetoresistance traces for di�er-

ent values of gate bias Vg ranging from -200mV to 200mV. Figure 3.10 is

a replot of the data in Fig. 3.9 as a function of 2Rc=a. For this series of

measurements, the magnetic modulation is �xed at B = 12 mT by setting

Bk=5 T at '=55�. The amplitude V0 of the electrostatic potential mod-

ulation as determined from the analysis of the Weiss oscillation amplitude

is plotted as a function of the applied gate bias Vg in Fig. 3.11. The elec-

trostatic modulation amplitude in the present system can be approximately

written as V0 � �1:2 � 10�3Vg + 0:10 mV . The �rst term represents the

gate-bias-induced component which is roughly proportional to Vg. The co-

e�cient 1:2 � 10�3 is the reduction factor which depends on the distance

of the 2DEG from the patterned gate and on the details of screening. The

value V0 = 0:10 meV at Vg = 0 represents the strain-induced component. It

is noted that the strain-induced component in the present sample is about

an order of magnitude smaller than those for samples with the modulation

structure made along the [110] direction [16]. Since the strain-induced po-

tential due to the piezoelectric coupling is minimized in the present system,

the one that plays the role here may be attributed to deformation potential

coupling [14].
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Figure 3.9: Magnetoresistance of the device with Ni striped gate for di�erent values of

the gate bias Vg with the magnetic modulation amplitude �xed at B0 = 12 mT by setting

Bk = 5T at ' = 55� at T=1.5K. The values of Vg are (from top to bottom) -200, -100,

-80, -50, 0, 50, 100, and 200 mV. The traces are vertically shifted for clarity.
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Figure 3.10: The data shown in Fig. 3.9 replotted as a function of 2Rc=a at T=1.5K.

The magnetic modulation amplitude is �xed at B0 = 12 mT. The values of Vg are (from

top to bottom) -200, -100, -80, -50, 0, 50, 100, and 200 mV. The traces are vertically

shifted for clarity.
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Figure 3.11: The change in the electrostatic potential modulation amplitude V0 as a

function of Vg . The V0 at Vg = 0 represents the strain-induced component.
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Chapter 4

Electron-electron umklapp

process in 2DEG under a

spatially alternating magnetic

�eld

4.1 Introduction

Electron-electron interaction is one of the most essential processes in con-

densed matter physics. It is essential for the energy relaxation within an

electron system. However, its role in the momentum relaxation is rather

subtle. It cannot contribute to resistivity in a Galilean invariant system hav-

ing continuous translational symmetry, because the total momentum of two

colliding electrons is conserved there. It is only with the participation of a

crystal lattice, i.e. the Umklapp process, that momentum relaxation occurs

The content of this chapter was reported in M. Kato, A. Endo and Y. Iye: Phys. Rev.

B58 4876 (1998); M. Kato, A. Endo and Y. Iye: J. Phys. Soc. Jpn. 68 1492 (1999); M.

Kato, A. Endo, S. Katsumoto and Y. Iye: J. Phys. Soc. Japan 68 No.8 2870 (1999); M.

Kato, A. Endo, S. Katsumoto and Y. Iye: Proc. of the 6th International Symposium on

Foundations of Quantum Mechanics in the Light of New Technology (ISQM-Tokyo'98),

(A.R.L., Hitachi Ltd., Hatoyama, Saitama, Japan, Aug., 1998), in press; M. Kato, A.

Endo, S. Katsumoto and Y. Iye: Proc. of the 13th Int. Conf. on the Electronic Properties

of Two-Dimensional Systems (EP2DS-13), (Ottawa, Aug., 1999), in press.
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by electron-electron scattering[1]. When it does occur, the electron-electron

Umklapp scattering generally gives rise to a T 2-dependent resistivity. Such a

T 2-term in resistivity has been observed in alkali metals, and is very conspic-

uous in so-called strongly correlated electron systems such as heavy fermion

metals, transition metal oxides and organic conductors. Although there has

been much progress in the theoretical understanding of the issue [2{4], a truly

quantitative comparison between theory and experiment seems di�cult at the

moment, because a full treatment of the relevant electron-electron process re-

quires detailed knowledge of the complex band structure of real materials and

the Umklapp matrix element. It is desirable, thus, to �nd a simplest possible

experimental system that exhibits the phenomenon at issue.

In the previous chapter, we have demonstrated that spatially modulated

magnetic �eld Bz(x) = B0 cosKx can be imposed on the 2DEG at the

GaAs/AlGaAs heterointerface, and that the modulation amplitude can be

precisely determined from analysis of the Weiss oscillation. The present sys-

tem allows us to break the translational symmetry in a controlled fashion, so

that it may provide an excellent test ground for this problem. This issue is

recently addressed by Messica et al. [5] for electrostatic modulation. They

have measured the low temperature resistance of 2DEG for di�erent gate

bias settings and found an excess resistance with a quadratic temperature

dependence, which is taken as a signature of the electron-electron scattering.

In this work, we use magnetic �eld modulation as the arti�cial periodicity.

There is a good reason for the preference of the magnetic over the elec-

trostatic modulation. Namely, use of magnetic modulation has a distinct

advantage that it allows us to change the modulation amplitude without af-

fecting the density of 2DEG. This is a crucial point in addressing the issue

of the electron-electron scattering, because the electron-electron interaction

is anticipated to be sensitive to the electron density.

4.2 Theory -Temperature dependence of

electron lifetime-

Consider �rst, two colliding electrons as shown in Fig. 4.1. An electron in

state k1 is scattered into state k0
1
with a change in energy by E(k0

1
)�E(k1).

Another electron in state k2 is scattered into state k
0

2
with a change in
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energy by E(k0
2
) � E(k2) at the same time. All the four electron states lie

within the thermal layer, of width � kBT , that straddles the Fermi surface.

Conservation of energy requires

E(k1) + E(k2) = E(k0
1
) + E(k0

2
): (4.1)

Similarly, conservation of momentum requires

k1 + k2 = k
0

1
+ k

0

2
: (4.2)

The scattering rate of the electron in state k1 is given by

1=�e�e(k1) =
X

k2;k
0

1
;k0

2

P (k1;k2;k
0

1
;k0

2
) (4.3)

where P (k1;k2;k
0

1
;k0

2
) is the probability that an electron in state k1 is

scattered into state k0
1
while another electron in state k2 is scattered into

state k0
2
, while obeying eq. (4.1) and eq. (4.2). In three dimensional case,

k

yk

xk

k T

G

k Tkk

k

k

k

k

k

kk

k

k

k

k
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k

yk

xk

k
k

Figure 4.1: Schematic diagram of (a)normal and (b) umklapp electron-electron scatter-

ing. The thermal layer of width kBT is shown by the shaded area straddling the Fermi

surface.

we have a sum over nine variables (k2;k
0

1
;k0

2
) since k1 is �xed. However,

only �ve of these variables are independent as eq. (4.1) and eq. (4.2) give
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us four constraints. If we may choose the �ve independent variables as

q = k01 � k2; E(k2) and E(k01), eq. (4.3) can be written as

1=�e�e(k1) =
X

q;E(k2);E(k0

1
)

P (q; E(k2); E(k
0
1)): (4.4)

The number of states in k-space avalible for scattering with energies E(k2)

and E(k01) is proportional to kBT=EF for each independent variable. This

leads

1=�e�e / T 2; d = 3: (4.5)

As mentioned before, electron-electron scattering comes to contribute to the

resistivity by umklapp process. It is noted that umklapp process will not

change the above temperature dependence of the electron lifetime but only

its magnitude. The above argument also gives the result

1=�e�e / T; d = 1 (4.6)

for one dimensional case. Finally, let us consider the results for the two

dimensional case. Is it T 2 or T ? We cannot apply the above arguments

directly to obtain the result for two dimensional case. A detailed calculation

of �e�e in two dimensions was given by Giuliani and Quinn [7] to yield

1=�e�e / T 2 ln(EF=kBT ); d = 2: (4.7)

Note that the situation in a real system is even more complicated than indi-

cated by eq. (4.7). We will see the comparison between the theory and our

experimental results in Section 4.4.

4.3 The observation of T 2-dependence of re-

sistivity

Figure 4.2 shows the resistivity of a GaAs/AlGaAs 2DEG with a striped

Ni gate (the same sample as the one shown in Fig. 3.6 to Fig. 3.11) as a

function of the parallel magnetic �eld Bk with B? = 0 at T=1.3K. Two

traces correspond to ' = 0� (B0 = 19:1 mT) and 90� (B0 = 0), respectively.

Note that the magnetic �eld is aligned exactly parallel to the 2DEG plane,

so that there is no uniform perpendicular �eld component. For ' = 90�, the
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resistivity is found to be independent of the applied magnetic �eld except

for a small peak in the low �eld region where the magnetization reversal

occurs. As mentioned in Section 3.3, the magnetic �eld modulation vanishes

for this �eld orientation, so that the observed �eld-independent resistivity can

be taken as the reference value for zero modulation amplitude. The origin

of the small peak can be interpreted as follows. During the magnetization

reversal, small domains with di�erent magnetization directions are formed,

and they produce a certain degree of magnetic �eld nonuniformity at the

2DEG plane which contributes to the carrier scattering. For ' = 0� at

which the magnetic modulation is maximum, a resistance change by about

5% is observed. The constant resistivity for B > 0:3 T gives the value under

the maximum magnetic �eld modulation B0 = 19:1 mT as determined from

the Weiss oscillation. We de�ne the excess resistivity �� by the di�erence

between the values for the two �eld orientations, as indicated in the �gure.
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Figure 4.2: Resistivity as a function of Bk, with B? = 0. The two traces corresopond to

(a) ' = 0� (B0 = 19:1 mT) and (b) 90� (B0 = 0) at T=1.3K. The excess resistivity �� is

de�ned by the di�erence between the values for the two �eld orientations.

Figure 4.3 shows the ' dependence of the excess resistivity �� at T=1.3K.
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As seen earlier in Fig. 3.8, the amplitude of magnetic �eld modulation changes

as B0 / cos'. Since the excess resistivity associated with the modulation

should be proportional to the square of the transition matrix element, �� /
B2

0 / cos2 ' is expected. The data shown here corroborate this dependence

as demonstrated by the good �t of the cos2 ' curve.
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Figure 4.3: The excess resistivity �� as a function of the azimuthal angle ' of the parallel

magnetic �eld at T=1.3K. The observed cos2 ' dependence (solid line) veri�es the relation

�� / B2

0
.

Figure 4.4(a) shows the temperature dependence of resistivity for ' = 0�

(B0 = 52 mT ) and for ' = 90� (B0 = 0). The resistivity for the latter case

is basically the same as that of the plain 2DEG, and is written for T < 40K

as

�0(T ) =
m�

nee2�total
=

m�

nee2

 
1

�0
+

1

�ph(T )

!

1

�0
= const;

1

�ph(T )
= �phT: (4.8)

Here, 1=�0 is the temperature-independent inverse scattering time limited by

the elastic scattering due to impurities and the T -linear term is attributed

to acoustic phonon scattering with deformation potential coupling. For T <

40K, 1=�total = 5:5 � 1010 + 5:8 � 108T [sec�1] for this sample, and �ph =

3:2 � 10�4Vs=m2K, which is in agreement with those reported earlier for

plain 2DEG samples with similar density and mobility [8, 9].
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Application of a spatially alternating magnetic �eld increases the re-

sistivity by ��. The temperature dependence of the excess resistivity

�� � � (B0 = 52mT )� � (B0 = 0) is shown in Fig. 4.4(b).
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Figure 4.4: (a) The inset shows the structure of the sample with the modulation wave

vector parallel to the current channel: (K k J) sample. The main panel shows the tem-

perature dependence of resistivity under maximum magnetic modulation (' = 0�: solid

circles) and no modulation (' = 90�: open circles). (b) Temperature dependence of the ex-

cess resistivity ��. The inset shows comparison of the e�ect of magnetostatic modulation

on resistivity between the (K k J) sample and the (K ? J) sample at T = 1:3K

Similar measurements were carried out on a di�erent sample with K ?
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J, in which the modulation vector K is perpendicular to the direction of

transport current J. The solid circles in the inset of Fig. 4.4(b) indicate

the total absence of the resistivity change in the (K ? J) sample, while

the solid squares show the cos2 '- (or, B2
0-) dependence of �� in the (K k

J) sample . The fact that the e�ect vanishes when the modulation wave

vector is perpendicular to the direction of transport current indicates that the

e�ect is due to Umklapp backscattering by the periodic structure, and that a

possible contribution from lithographical irregularity is of minor importance.

Figure 4.5 shows the excess resistivity �� plotted against T 2 for several values
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Figure 4.5: The excess resistivity �� plotted against T 2 for four di�erent values of ',

which set the magnetic modulation amplitude, Left panel; B0 = 19, 17, 14, and 10 mT

for Ni stripes, and Right panel; B0 = 52, 42, 35, and 22 mT for Co stripes, respectively.

of modulation amplitude B0. These data were taken at several di�erent

settings of ', which give di�erent values of B0, as mentioned above. It is

seen that �� at low temperatures (T < 20K) can be expressed as �� =

AT 2 + C. The T 2 term represents the electron-electron scattering, which

comes to contribute to momentum relaxation in the presence of the periodic

magnetic �eld modulation.
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4.4 The electron density dependence of e-e

scattering

In Section 4.3, we found that the excess resistivity varies as �� = AT 2 + C,

and is proportional to the square of the amplitude B0 of the alternating

magnetic �eld. In this section, we compare our experimental results with the

theoretical formula by T. Sasaki and H. Fukuyama [10]. They calculated the

conductivity of 2DEG under a spatially modulated magnetic �eld.

Here, we consider a 2DEG subjected to a magnetic �eld modulation

B=(B0 cosKx)ẑ. We write a Hamiltonian which includes the impurity po-

tential Uimp and the electron-electron interaction Ue�e as

H =
(P � eA)2

2m�
+ Uimp + Ue�e

=
P 2

2m�
+ Uimp + Ue�e + (!0=K)py sinKx

+(m�!2
0=4K

2)(1� cos 2Kx) (4.9)

where !0 = eB0=m
�. For small values of the modulation amplitude B0, the

contribution of the term (m�!2
0=4K

2)(1 � cos 2Kx) / B2
0 can be neglected.

We de�ne H = H0 +H 0

H0 =
P 2

2m�
+ Uimp (4.10)

H 0 = Ue�e + (!0=K)py sinKx (4.11)

and treat H 0 as perturbation. Equation (4.10) can be written as

H0 =
X
k

("k � �)nk =
X
k

("k � �)a+k ak ; "k =
�h2k2

2m�
: (4.12)

The �rst term of eq. (4.11),i.e. Coulomb interaction, is

Ue�e = U
X
k;k0;q

a+k+qa
+
k0�qak0ak: (4.13)

The second term of eq. (4.11) isZ
	+(r)

!0

K
sinKx

1

i

@

@y
	(r)dr (4.14)

=
X
k

!0

K

ky
2i

n
a+K+kak � a+k�Kak

o
(4.15)

K =

 
K = 2�

a

0

!
: (4.16)
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Then, eq. (4.11) takes the form

H 0 =
X
k

!0

K

ky
2i

n
a+K+kak � a+k�Kak

o
+ U

X
k;k0;q

a+k+qa
+
k0�qak0ak: (4.17)

The excess conductivity ��� calculated for the �rst term in eq. (4.17), which

corresponds to the C-term (�� = AT 2 + C), is given as

���(T = 0) =
e2

h
(!0�)

2

q
k2F � (K=2)2

K
K = 2�=a (4.18)

where �� � �xx��0 = 1=�xx�1=�0: As kF � K in the present experimental

con�guration, we can expect that ��� is proportional to B2
0�

2pne from

eq. (4.18).

By illuminating with an LED, we changed the density ne of the single

sample. Figure 4.6 shows that ��� at T=0 is plotted against B2
0�

2pne. The
data shows quite good agreement with the theoretically calculated result.
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Figure 4.6: ��� at T=0 is plotted against B2

0
�2
p
ne. Dotted line shows theoretically

calculated result eq. (4.18). The inset shows the data obtained by Overend et.al.[6]. Elec-

tron density ne=4.5�1015m�2, mobility �=55m2V�1s�1, modulation period a=0.5�m,

and modulation amplitude B0=300mT for the device used in [6]

At �nite temperatures, the electron-electron scattering due to the second

term in eq. (4.17) also contributes to the conductivity. Although the e-

e scattering time �e�e / T 2 ln(EF=kBT ) in a two-dimensional system from
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eq. (4.7), the conductivity itself shows T 2-dependence. Sasaki et.al. shows

that

�� = �Ae�eT
2

Ae�e �
�2

6

e2

h
(UD)2(

e

m
)2
(kB)

2

�h3K2

2m

� B2
0�

3: (4.19)

Here, D is the density of states of the Fermi energy. Figure 4.7 shows the

B2
0 -dependence of Ae�e. The coe�cient of the T 2-term associated with the

e-e scattering rate should be proportional to the square of the transition ma-

trix element, B2
0 . From eq. (4.19), Ae�e is expected to be proportional to
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Figure 4.7: B2
0-dependence of Ae�e.

B2
0�

3. It is noted that only the value U can be taken as �tting parameter.

Figure 4.8 shows B2
0�

3-dependence of Ae�e. The results give us the esti-

mated value DU � 0.11. The plotted data shows some deviation from B2
0�

3-

dependence. The deviation from the theoretical expectation is presumably

originated from the fact we neglect q-dependence of U in eq. (4.17), which

leads to ne-independence of U . The screening e�ect qualitatively increases

with increasing ne, which leads to minimizing the e�ect of electron-electron

interaction. Figure 4.9 shows ne-dependence of estimated value DU . We

obtain DU / 1=ne from the results, however, we hope that the present result

may stimulate more e�orts on the theoretical side.
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Figure 4.8: �3B2
0-dependence of Ae�e. Dotted line shows theoretically calculated result

eq. (4.19). The inset shows the data obtained by Overend et.al.[6]. Electron density

ne=4.5�1015m�2, mobility �=55m2V�1s�1, modulation period a=0.5�m, and modulation

amplitude B0=300mT for the device used in [6]
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Figure 4.9: ne-dependence of DU using eq.(4.19)
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It is possible that the amplitude of magnetic �eld modulation is so large

that we are observing the e�ects of miniband formations. From eq.(4.9), the

amplitude of the minigap can be approximately written as U0 = (!0=K)�hkF

near the Fermi level. The estimated value U0 is 0.9meV at B0=52mT for the

present sample. When the collision broadening �h=�0 exceeds U0, the collision

will wash out the e�ects. Although the value �h=�0=0.04meV evaluated from

the resistivity is much less than U0, our results which show good agreement

with the perturbation theory do not exhibit the evidence of miniband for-

mations. It implies that the scattering time relevant to the level broadening

is much less than the transport relaxation time �0. A rough estimate of the

relevant scattering time can be made from the threshold magnetic �eld for

the appearance of the SdH oscillation �h=�0 = 0:5meV.

A similar T 2-dependent excess resistance is recently reported by Overend

et.al.[6] for their device with cobalt stripes. The inset of Fig. 4.6 and that of

Fig. 4.8 show our data and the results given by Overend et.al.[6]. They used

the device with electron density ne=4.5�10
15m�2, mobility �=55m2V�1s�1,

modulation period a=0.5�m, and modulation amplitude B0=300mT.

4.5 Electron temperature dependence of

electron-electron scattering

A strong piece of evidence that the excess resistivity is indeed due to electron-

electron scattering, is obtained by a study of the hot electron e�ect. The

measurement of excess resistivity similar to that described in Section 4.3

was carried out as a function of bias current density with the sample kept

at the lowest temperature (1:25 K). The electron temperature Te for low to

medium current bias was determined through the standard analysis of the

Shubnikov-de Haas (SdH) oscillation amplitude. The comparison between

temperature dependence of SdH oscillation with the lowest bias current and

the bias current dependence of the oscillation with the lowest temperature

gives us the bias current dependence of the electron temperature Te at a

lower current bias. At a higher current bias, where SdH oscillations are no

longer visible, we elected to use the following empirical relationship proposed

by Hirakawa and Sakaki [13].
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Pe = �e(T
2
e � T 2

L) (4.20)

Here, TL is the lattice temperature and Pe is the input power per electron.

According to Hirakawa and Sakaki, the coe�cient �e � 2:2� 10�16W=K2 is

nearly independent of the electron density and mobility. Figure 4.10 shows

the results given by Hirakawa et.al. and our results using the present sample.

We found that the above relationship holds, with a slightly di�erent value of

the coe�cient, �e � 3:5�10�16W=K2. We used this relationship to estimate

Te at higher values of bias current.
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Figure 4.10: Input power per electron dependence of T 2
e � T 2

L at TL=4.2K given by

Hirakawa et.al. [13] and our results at TL=1.5K using the present sample.

The inset of Fig. 4.11 shows the bias current dependence of the resistiv-

ity for the ' = 0� (B0=52mT) and ' = 90� (B0=0) con�gurations. The

current density independence of � for the latter case ensures that the lattice

temperature remains unchanged even at the highest bias current. (A change

in the lattice temperature would manifest itself as the T -linear resistivity

due to acoustic phonon scattering.) The solid triangles in the main panel

of Fig. 4.11 show �� as a function of T 2
e . It is seen that they are in good

agreement with the T 2-dependence (open squares) taken at low current bias.
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This result furnishes an unmistakable piece of evidence that the observed

resistivity increase is indeed due to the electron-electron scattering.

We also note that the present result forms a basis for a possible new

method of determining the temperature Te of hot electrons. An advantage of

this method over the more conventional method based on the Shubnikov-de

Haas oscillation is that the former can be used at low (or even zero) magnetic

�elds and can be applied to low-mobility samples.
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Figure 4.11: The inset shows the current density dependence of the resistivity for the

' = 0� (B0=52mT), and ' = 90� (B0=0) con�gurations. The main panel shows �� as

a function of T 2
e (solid triangles) to be compared with the T 2-dependence in the low bias

current limit (open squares).

4.6 Transverse resistance in oblique lateral

superlattice

As shown in the inset of Fig. 4.4 (b), the contribution of e-e scattering to the

excess resistivity depends on the angle between modulation wave vector and

current direction. The contribution vanishes in the (K ? J) sample. When

the Umklapp vector was made at an angle 45� with the current vector, the

scattering process is expected to contribute equally to the longitudinal and
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transverse components of the electric �eld. We made the Hall bar oriented

with the current channel parallel to the [110] direction, and the grating pat-

tern made of cobalt oriented along the [100] direction so that the modulation

wave vector was at 45� with respect to the current direction as shown in

the inset of Fig. 4.12. The reason for setting the grating pattern parallel to

the [100] direction was to minimize the built-in potential modulation due to

strain via the piezoelectric coupling as mentioned in Section 2.3 [11, 12].

We measured the longitudinal and transverse resistivity components with an
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Figure 4.12: The upper left inset schematically shows the sample con�guration. The

lower right inset shows the temperature dependences of the resistivities in the presence

and absence of the spatially alternating magnetic �eld. The di�erence of the two sets of

data gives the excess resistivity ��xx due to the lateral magnetic superlattice. The main

panel shows the excess longitudinal resistivity ��xx (solid circles) and the transverse

resistivity �xy (open circles) as a function of T 2.

external �eld Bk = 5T applied exactly parallel to the 2DEG plane and paral-

lel to the modulation wave vector (i.e. perpendicular to the long side of the

strips). The amplitude of the magnetic �eld modulation for this con�gura-

tion is B0 � 52mT . The e�ect of the lateral magnetic superlattice in this case

manifests itself as an increase in the longitudinal resistivity, and as a non-

zero transverse resistivity component even though the uniform component of

the magnetic �eld is zero.
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The lower right inset of Fig. 4.12 shows the temperature dependence of

the longitudinal resistivity in the presence and absence of the magnetic �eld

modulation. The excess longitudinal resistivity ��xx is de�ned as the di�er-

ence between the two data, and is plotted against T 2 in the main panel with

solid circles. They obey the relation ��xx(T ) = AT 2+C. Also shown here is

the transverse resistivity �xy (open circles), which occurs only in the case of

oblique lateral superlattice. It is seen that the relation j�xy(T )j = ��xx(T )

holds very well in the present case of 45� oblique grating. Numerically,

j�xy(T )j = ��xx(T ) = 11:0 + 0:040(T [K])2 [
] for B0 = 52mT .

The result, j�xy(T )j = ��xx(T ), by itself carries no new information since

it can be derived from the anisotropic resistivity tensor with respect to the

direction of K. However, it is of practical use in the case of electrostatic

modulation which we now turn to. For this measurement, we demagnetized

the ferromagnetic gate and changed the gate bias at zero magnetic �eld.

The inset of Fig. 4.13 shows the gate bias dependence of �xx and �xy at 1.5

K. With increasing negative gate bias, �xx increases and �xy becomes non-

zero, even though no magnetic �eld is involved at all. The situation here is

somewhat more complicated than the case of magnetic modulation, because

the gate bias changes not only the electrostatic modulation amplitude but

also the electron density, so that the quantity ��xx cannot be extracted so

straightforwardly as the case of magnetic modulation. However, in the case

of 45� oblique grating, we can estimate the value ��xx using the results of

magnetic case ��xx = j�xyj .

The main panel of Fig. 4.13 shows �xx(T ) and �xy(T ) for the gate bias

Vg = �200mV . The electron density at this gate bias determined from

the Hall data is ne = 3:2 � 1015m�2, which is a little lower than ne =

3:4 � 1015m�2 at Vg = 0. As seen in the inset, the resistivity change in

this range of the gate bias is small, so that the e�ect of the lateral electric

superlattice can be treated as perturbation. It is seen that �xy(T ) shows a

T 2 dependence, while �xx(T ) shows behavior close to T -linear. Numerically,

�xy = 0:82 + 0:0016 (T [K])2 [
] for Vg = �200mV . Based on the result for

the lateral magnetic superlattice, we assume that j�xy(T )j = ��xx(T ), and

evaluate the quantity �xx�j�xyj, which corresponds to �
(0)
xx = �xx���xx, i.e.

the resistivity excluding the e�ect of the lateral superlattice, which is shown

by small dots in Fig. 4.13. The �(0)xx thus obtained is not so di�erent from �xx

for the present case of weak modulation. The temperature dependence of �(0)xx
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is approximately T -linear, which attributed to acoustic phonon scattering as

mentioned earlier. The coe�cient of the T -linear term of the inverse mobility

1=� is calculated as � = 3:3 � 10�8Vs=cm2K and is in good agreement

with those reported in the literature.[8] We note however that �(0)xx (T ) of

the 2DEG under electrostatic modulation shows some deviation from the

T -linear behavior of a plain 2DEG.

The deviation from the simple picture becomes more evident, as the

gate bias is set more negative. Firstly, the temperature dependence of

�(0)xx = �xx � j�xyj deviates further from the T -linear behavior and becomes

increasingly superlinear. Secondly, �xy at low temperature deviates from the

T 2-dependence. Under a large negative bias, �xy even shows an upturn at the

lowest temperatures. These anomalous features are presumably associated

with the following. A large negative bias both decreases the Fermi energy

and increases the electrostatic modulation amplitude. When the latter is not

so small compared to the former, the perturbative treatment breaks down.

It is necessary to take account of the spatial inhomogeneity of the electron

density. Another factor is that the e�ect of disorder gains importance with

decreasing electron density, In order to interpret the experimental data in

the large negative bias region, these factors have to be properly taken into

account.
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Figure 4.13: The inset shows the longitudinal resistivity �xx and the transverse resistivity

�xy as a function of the gate bias Vg . The main panel shows the temperature dependences

of �xx (triangles, left scale) and �xy (squares, right scale) with the gate bias �xed at

Vg = �200mV (marked by arrows in the inset). The small dots represent �
(0)
xx = �xx�j�xyj

which corresponds to the resistivity after subtracting the e�ect of the lateral superlattice.
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Chapter 5

Conclusion

We have demonstrated that spatially modulated magnetic �eld can be im-

posed on 2DEG at the GaAs/AlGaAs heterointerface in a controlled fashion.

Independent control of the �eld components parallel and perpendicular to

the 2DEG plane allowed us to �x the magnetization of the striped ferromag-

netic gate, while we measure the low (or zero) magnetic �eld transport in the

2DEG. The amplitudes of the magnetic and electrostatic modulations can be

determined from the analysis of the Weiss oscillation.

The 2DEG under a modulated magnetic �eld with zero uniform compo-

nent is of particular interest in the context of combined e�ect of electron-

electron interaction and arti�cial periodicity. Here, the use of magnetic �eld

modulation in place of ordinary electrostatic modulation has a distinct ad-

vantage that the modulation amplitude can be varied without a�ecting the

2DEG density. The excess resistivity at �nite temperatures shows a T
2-

dependence characteristic of the electron-electron interaction. These are

manifestation of electron-electron umklapp process, which are brought into

play by lifting of Galilean invariance by the arti�cial lateral superlattice. The

results given by the study of hot electron and oblique lateral superlattice also

support this picture. The present system o�ers an ideal ground for quanti-

tative comparison between theory and experiment for this fundamental issue

of solid state physics.
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